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ABSTRACT: The advantages of Gaussian-type orbitals (GTO) over Slater-type orbitals
(STO) in quantum chemistry calculations are clarified here by means of a holistic
approach. The popular Microsoft Office Excel program was used to create an interactive
application with which students are able to explore the features of GTO, including
automatic calculations and graphical displays. The simple case of the ground state wave
function of the hydrogen atom is analyzed, for which the mathematical expressions are
easily obtained by the students. The present work can be used also as a classroom guide
for the particular topic of GTO, usually taught in introductory courses to atomic and
molecular structure.
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■ INTRODUCTION

Modern undergraduate curricula in chemistry and biochemistry
usually include courses in Computational Chemistry. This is a
consequence of the importance that this area has gained in
recent decades, as expressed by the Chemistry Nobel prize
awarded in 1998 and 2013 to computational chemists. After a
first contact with quantum mechanical foundations in the first
year of university, the students are ready to be introduced to
basic approximation techniques for the solution of the
Schrödinger equation. Nowadays, quantum chemistry calcu-
lations may seem too easy to run as a wide range of commercial
and freeware program packages are available. They are usually
very user-friendly and have appealing graphical interfaces,
which may induce the students to use them as “black box”
tools. Most beginners in science courses immediately reveal
that attitude, which we have to dispel by gradually showing
them the mathematical background of the methods. On the
other hand, computers and other technological devices are part
of the student’s everyday life, and they are always keen to use
them. Modern courses in computational chemistry have to
reach the right balance between teaching the formal
mathematical foundations of methodologies and running
“black box” computer applications, in order to keep the interest
of students.
Here, we introduce a Microsoft Office Excel application,

which allows the students to explore the features of Gaussian-
type orbitals (GTOs) as opposed to those of Slater-type
orbitals (STOs). Therefore, an interactive application is
presented in which the simple case of the ground state wave
function of the hydrogen atom is analyzed, using mathematical
expressions easily obtained by the students. The present work
can be employed as a classroom guide for the particular topic of
GTOs, usually taught in introductory courses to atomic and
molecular structure.

■ METHODS

The sequence of the topics presented here aims to drive the
student through a learning path in which the characteristics and
usefulness of GTOs are successively apprehended, by
comparison with STOs. Nowadays, it is well established that
providing students with a wide diversity of study tools definitely
improves the learning process. Therefore, for each one of the
topics, a few highly visual and interactive exercises were
planned. To accomplish this goal, an application was built with
the Microsoft Office Excel1 program, which is very popular
among students. It comprises nine different spreadsheets to be
used in several activities, and it is available for download in the
Supporting Information. Only the functions corresponding to
the 1s hydrogen atomic orbital will be considered for the sake
of simplicity. They were all designed to be highly interactive,
and the cell formulas used in calculations and plots can be easily
edited, which is an enormous pedagogical support for beginners
in this field.
The theoretical concepts that are needed to follow the

exercises suggested in this work can be found in almost all
introductory textbooks to Computational Chemistry and a few
specific references.2−7 Nevertheless, a summary of the relevant
aspects of the theory is presented as Supporting Information.

■ RESULTS

Fitting a GTO to a STO

The first exercise is supported by the spreadsheet application
STO_vs_GTO, which concerns the comparison of the two
types of functions, defined as
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The χ1s
GTO is a function familiar to first year students who have

learned about it in statistics as the normal distribution. The user
can input any positive value for the GTO exponent α, and
assess the quality of the fitting to the ζ = 1 STO, graphically
and by calculation of the fitting error ε1s as defined by Pople et
al.:8
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The fitting error 2 is estimated by means of a simple but
effective integration technique, which is the Newton−Cotes
formula of first order or the trapezoidal rule.9 We have
considered the interval of integration 0.0 < r < 11.0 (in au),
subdivided into 110 segments of equal width 0.1, which are
values that ensure enough accuracy to compare the perform-
ances of different GTOs.
Which is then the best value for α?
By trying different values for α, one can realize how the

quality of the overall fitting is affected. As a relatively simple
exercise, students are invited to get the optimum α, i.e., the one
that minimizes integral 2, by applying the Solver add-in
optimization tool.10 One has to select the minimization mode
of Solver, and set the target cell of ε1s by changing the yellow
cell of αi. The optimum value for the GTO exponent, obtained
with a convergence criterion of 0.000001, is α = 0.271062,
corresponding to a fitting error ε1s = 0.0429957 and energy E =
−0.4242EH.
As evident from the plot, regions farther from and closer to

the nucleus have different fitting performances and, as we
know, they contribute differently to the electron energy.
Consequently, the best value of the exponent in terms of
electron energy is not given exactly by minimizing eq 2 but
rather by using the Rayleigh ratio upon the Variation theory:2
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The denominator of eq 3 is equal to unity as the GTO
expression 1 is already normalized. In the numerator, the
Hamiltonian for this radial symmetry problem is defined, in
atomic units, as

̂ = − ∇ −
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Substituting GTO form 1 and the above Hamiltonian into
expression 3, and defining the space in spherical coordinates,
we get the expression:
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The radial symmetry of the system makes the integration in θ
and ϕ to be equal to 4π. Using the values of the following
definite integrals,11
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the expression for the energy as a function of α is obtained:
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The spreadsheet application includes the plot of expression 7,
which shows the existence of a single minimum at α = 8/(9π).
In fact, this optimum value can be verified by minimization of 7.
This value corresponds to an electronic energy of −0.4244EH,
far from the exact value of −0.5EH for the 1s hydrogen atom.
This is, thus, the best we can achieve in terms of energy (ca.
15% error) with a GTO wave function of the form 1. It is
interesting to verify that, in reality, the value of α corresponding
to the minimum energy does not imply the best fit from eq 2,
ε1s = 0.0434376 as compared with ε1s = 0.0429957 obtained
previously with α = 0.271062.

Table 1. Coefficients, Exponents, Least-Squares Errors, and Electronic Energies for STO-KG Contracted Functions of H Atom
Ground State

Least-Squares Fit8 Energy Optimized12

K αi ci ε1s E/hartree αi ci ε1s
a E/hartree

2 0.151623 0.678914 3.16 × 10−3 −0.48116a 1.332480 0.2744085 6.70 × 10−3 −0.48581
0.851819 0.430129 0.2015287 0.8212254

3 0.109818 0.444635 3.31 × 10−4 −0.49491 4.500225 0.07047866 1.25 × 10−3 −0.49698
0.405771 0.535328 0.6812745 0.4078893
2.22766 0.154329 0.1513748 0.6476689

5 0.0744527 0.193572 6.88 × 10−6 −0.49951 34.05432 0.006026783 1.29 × 10−4 −0.49981
0.197572 0.482570 5.122332 0.04503430
0.578648 0.331816 1.164455 0.2019221
2.07173 0.113541 0.3271926 0.5030515
11.3056 0.0221406 0.1030649 0.3854084

Exact −0.50000 −0.50000
aCalculated in this work.

Journal of Chemical Education Article

dx.doi.org/10.1021/ed500437a | J. Chem. Educ. 2014, 91, 2124−21272125



Product of GTOs or STOs

The spreadsheet application product_2_GTO displays the
graphical result of the product of two Gaussian functions. It
allows the user to choose the center and the exponent of each
GTO, and confirm graphically that the product results always in
a new GTO function (see the mathematical demonstration in
Supporting Information). One can also verify that the greater
the distance between the centers of the GTOs, the smaller the
product. Those general characteristics can be extrapolated to
more than two functions; the present application offers the
possibility to test the product of three GTOs (product_3_G-
TO).
For comparison, it is also possible to work with STOs in

separate Excel spreadsheets (product_2_STO and product_3_-
STO) and observe that the product never results in another
STO unless the original functions are all centered at the same
point.

Optimizing STO-KG

Defining the contracted function,

∑χ χ α=μ c ( )
i

K

i i
STO

1s
GTO

(8)

is to find the best values for the contraction coefficients ci and
GTO exponents αi, according to a certain criterion. The first
one used by Pople et al.8 was to minimize a least-squares fitting
error of type 2. Later, new sets of parameters were defined by
minimizing the electronic energy of the atom ground state.12

Table 1 is adapted from those pioneering works and concerns
the values for the hydrogen atom 1s orbital.
The spreadsheet applications STO-KG show the result of

contracted functions with K = 2, 3, and 5, given the values of ci
and αi as input. It is interesting to note that the higher the
number of primitives used, the more accurate the contracted
function will be, i.e., the smaller the value of the fitting error ε1s,
despite the fact that the first derivative at the nucleus remains
always nil.
As shown in Table 1, this criterion does not ensure the best

energy function. We have used the Excel application to
calculate the fitting error obtained with the minimum energy
exponents provided by Pople et al.,12 and the results are
collected in Table 1. As observed previously, the energy
minimization method shows higher values for ε1s.
As an additional exercise, the Solver can be used to find the

contracted function that minimizes the fitting error ε1s. The
simplest case of K = 2 is less affected by convergence
instabilities, and consequently, the corresponding spreadsheet is
the only one prepared to that exercise. The user has to set the
target cell of ε1s by changing the values of the colored cells of ci
and αi, under the normalization condition, i.e., forcing the
Norm. condition cell to keep the value 1. As usual in most
iterative processes, the convergence is not guaranteed, and it
depends on the initial values. For instance, starting with the
values c1 = 0.1, c2 = 0.1, α1 = 1.3, and α2 = 1.0, the Pople results
in Table 1 are well reproduced.8

The present spreadsheet application can be used also to find
the best linear combination of any given pair of fixed GTOs, on
the basis of minimization of ε1s. As an illustration, one can use
the two exponents of STO-2G contracted function suggested
by Pople et al.,12 namely, α1 = 1.332480 and α2 = 0.2015287,
and apply the Solver tool. In this exercise, only the cells
corresponding to the linear coefficients are allowed to vary,

under the normalization condition. The process converges
rapidly to c1 = 0.289616 and c2 = 0.810237, thus slightly
different from Pople’s values, but with a smaller associated error
ε1s = 6.40 × 10−3.
Calculating the Energy Optimized Coefficients of STO-2G

The spreadsheet application 2-fold-secular determinant includes
an exercise to find the minimum energy wave function of the H
atom ground state for the simplest case of a trial function (8)
with K = 2.
The Rayleigh ratio (3) that results from the application of the

variation method may be simplified to

=
+ +
+ +

E
c H c H c c H

c c c c S
2

2
1

2
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2
22 1 2 12

1
2

2
2
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Taking into account the symmetry of this particular system, we
have
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All these elements can be easily evaluated using Hamiltonian
(4) and definite integrals (6). The overlap integrals Sii are equal
to unity, S11 = S22 = 1, as we are using normalized GTOs (1).
All the canonical forms of the elements H11, H22, H12, and S12,
which depend on the input values of α1 and α2, are accessible
by the user in the respective spreadsheet cells.
Minimizing the energy expression 9 with respect to the

coefficients c1 and c2, and keeping the GTO exponents α1 and
α2 fixed, leads to the secular equations whose corresponding
determinant should vanish in order to get the nontrivial
solutions. That condition results in a quadratic equation whose
lowest root is the best energy one can obtain for the atom
ground state, using a linear combination of two GTO with
predefined and fixed exponents α1 and α2.

+ + =
= − = − −

= −

aE bE c
a S b H S H H

c H H H

0
where 1 ; 2 ;

2

12 12 12 11 22

11 22 12
2

(13)

The three coefficients of the equation, a, b, and c, are calculated
in separated cells, and the two roots are shown, as well. The
spreadsheet identifies the lowest root, with which the secular
equations are defined and, consequently, the c1/c2 ratio. Using
the equation of the normalization condition the values of
coefficients c1 and c2 are finally obtained.
As a first exercise with this spreadsheet, one may use Table 1

to enter the exponents found by Pople et al.12 (α1 = 1.332480
and α2 = 0.2015287) and verify the correct values of the energy
and expansion coefficients. Another interesting exercise is to
enter the least-squares fit exponents suggested earlier by Pople
et al.8 (α1 = 0.151623 and α2 = 0.851819). The coefficients
found, c1 = 0.710925 and c2 = 0.393837, are not exactly those
obtained by the authors (c1 = 0.678914 and c2 = 0.430129, see
Table 1) due to the different minimization criteria used. The
corresponding energies are E = −0.48199EH and E =
−0.48116EH for the former and latter cases, respectively. The
associated fitting errors, computed with the STO-2G spread-
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sheet, are ε1s = 0.00409 and ε1s = 0.00316, respectively, which
reveals once again that a least-squares fit wave function does
not ensure the minimum in the electronic energy.
The Solver may be used also in this spreadsheet to find the

values of exponents α1 and α2, and corresponding coefficients c1
and c2, that minimize the energy of the trial function. The user
has to set the target cell of E, by changing the values of the two
colored cells of αi. The method converges rapidly to Pople’s
exponents in Table 112 if, for instance, the previous values of
Pople et al.8 (α1 = 0.151623 and α2 = 0.8518199) are given as
input.

■ CONCLUSIONS

Computational programs have already been shown to be
invaluable pedagogical instruments for introducing fundamental
topics of computational chemistry at the undergraduate
level.13−17 This work focuses on the differences between Slater
and Gaussian basis set of atomic functions. Using nothing more
than the popular Microsoft Office Excel program, the main
features of GTOs are explored and compared with STOs. This
interactive application allows the user to input the values for the
exponents and coefficients of combination of GTOs in STO-
KG minimal basis, and then to explore graphically and by
calculus some mathematical features. Among the activities
available in the Microsoft Office Excel application, it is
important to stress the product of two or three GTOs or
STOs, the fitting of a GTO or STO-KG contracted function to
a pure STO, or the calculation of the energy-minimized
coefficients of a linear combination of two GTOs. Using the
Solver add-in tool, it is shown that different optimized
contracted functions are obtained with the STO fitting error
and the electronic energy minimization criteria. In this work,
the student has the opportunity to unveil some secrets of basis
sets in computational chemistry by means of a simple and
familiar program, and that training could be a valuable
contribution to a more rational use of advanced quantum
packages.

■ ASSOCIATED CONTENT

*S Supporting Information

A Microsoft Excel application, with nine different interactive
exercises, is provided as an indispensable tool to this article.
The relevant topics of quantum theory, which support the
exercises developed in this work, are summarized as auxiliary
material. This material is available via the Internet at http://
pubs.acs.org.
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