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Neural Network Potential in Computational Chemistry MO Energies vs Potential Energy
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Molecular Mechanics (Force Fields) s Quantum mechanics is great and.
Scale as ~O(N) e o accurate, but too expensive for big

DNA, proteins, etc. 23 (ES)) biomolecules like proteins and DNAs.
- Classical mechanics is fast but has many Variable-length points for each molecule.
log(Computational Cost) unphysical points...

Application: Semiconductors, Photon-chemistry and Organometallic
Chemistry, and dive deeper of the molecule
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Example of test molecule C;NHs

Molecular Orbital Model

Using ANI to Predict Molecular Orbitals
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RAEV (Reduced AEV) for 1 Atom Using ANI to Predict Molecular Orbitals
Reduced AEV clww]w]m % diff > 0.024 hartree | 15.04 kcal/mol (52 points)

Size: 30 —— ground true
—e— prediction e o

s alale

Extract features from AEV
by different Atom network

. R R R A pair of RAEV e _
Pairwise Interation  Clelalalal T Tx e Tol==T T 1 T=l=lelala LTI Telml=e = [T T=lalal=lal 1T Size: [30, 30] Sort the Atomic
Energies to get
good base MO

MO Energy / hartree

Dyadics of a pair of RAEV
R0 11 e R 3 3 3 3 1110 e e Size: 900 Energies
ay \ j
ab =ab’ = ";_2 (b by -+ by )
(l-.N - 20 30
Molecular Orbitals
HH HC HN HO
Network Network Network Network
/Get Correction by network \ Ne(t:\:iork Ne(tzwc;rk Ne(t:‘.l\:!fk Ne(;?ork Using ANI to Predict Molecular Orbitals
5 X diff > 0.032 hartree | 20 kcal/mol (23 points)
Interation NH NC NN NO —— ground true
Network Network Network Network / \ - predidi?llnatoms "”_’.——ﬂ—"-f
1. Atoms pair-wise Interaction on oc ox 00 Final output : l
. . Network Network Network Network
2. Exponential Interaction . |
Self Interation H C N [¢} g
@ e Cay / Network Network Network Network Bas e MO g
Energies + :
. o-
. Correction by =
I R I P output from one pair of atoms
Pairwise Interation Output 1w e wia 10 e 0w we e e e e e e Size: 15 network.
(H should be 2, which is padded K /
to 15)
Exponential Interation Decay Molecular Orbitals
; output from one pair of atoms
by Distance of two atoms i
' ize: 15
output = e~ dstance . output
Predicted MOs Error test_mole_2 CN;OH;
MO Correction by ANI |
[ ©
MO base Energy + +| o E
[ 38
/ . . \Calculated by gaussian for each Atom L2
Get a variable-length final o3
| @
output —— Absolute error [“e
MO il . E
changes with 3
1. Base energies + SR : |
. g Concatenates, Sort and Remove padding tr alnlng 1terations -
Correction by network
KQ“ Sort / Output: Molecular Orbital __21 2 = One Molecular Orbital Energy
2 Size: 1
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